Help Center
  • FAQ
    browse most common questions
  • Live Chat
    talk with our online service
  • Email
    contact your dedicated sales:
  • Call Us
    9:00 - 18:00, Mon.- Fri. (GMT+8)
0

Class Carrier Mobile Phone PCB

Published on 7/30/2019 9:56:07 AM

Description

<p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Speaking of PCB board, many friends will think that it can be seen everywhere around us. From all household appliances, various accessories in computers, to various digital products, as long as electronic products almost always use PCB boards, then what is PCB board? PCB board is <strong>Printed&nbsp;Circuit&nbsp;Block</strong>, which is a printed circuit board for electronic components to be inserted, with a line base. The copper plated substrate is printed with an anti-corrosion line by printing and etched out of the line.</span></p><p style="line-height: 1.5em;"><span style="font-family: &#39;Times New Roman&#39;;color: rgb(68, 68, 68);letter-spacing: 0;font-size: 14px;background: rgb(255, 255, 255)">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">PCB can be divided into single-layer, double-layer, and multi-layer boards. The various electronic components are integrated on the PCB. On the most basic single-layer PCB, the parts are concentrated on one side and the wires are concentrated on the other side. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">In this case, we need to make holes in the board so that the pins can pass through the board to the other side, so the parts are soldered to the other side. Because of this, the front and back sides of such a PCB are called Component&nbsp;Side and Solder&nbsp;Side, respectively. The double-layer board can be seen as consisting of two single-layer boards that are relatively bonded together, with electronic components and traces on both sides of the board.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Sometimes it is necessary to connect a single wire on one across&nbsp;to the other across&nbsp;of the board, which is through the via. The via hole is a small hole replenished or shrouded with copper&nbsp;on the PCB, which has relations with the wires on both sides. Many computer motherboards now use 4 or even 6-layer PCB boards, and graphics cards generally use 6-layer PCB boards. Many high-end graphics cards use 8-layer PCB boards like the NVIDIA GeForce4Ti series. This is called multi-layer PCB board. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em; text-align: center;"><img src="https://jpfile1.oss-cn-shenzhen.aliyuncs.com/allpcb/web/image/20190730/6370007688160964271873481.png" alt="multi-layer pcb board.png"/><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;"></span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The problem of connecting the lines between the layers is also encountered on the multilayer board, and can also be acquired&nbsp;by the via holes. Since it is a multi-layer board, sometimes the via holes do not need to penetrate the entire board. Such via holes are called <strong>Buried&nbsp;vias</strong> and <strong>Blind&nbsp;vias</strong> because they penetrate only a few layers. A blind hole connects several layers of internal to a surface board&nbsp;without penetrating the entire board.&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The buried hole is only connected to the inner&nbsp;board, so the light is not visible from the surface. In the multi-layer board, the whole&nbsp;layer is directly linked to the ground line&nbsp;and the power supply. So we classify each layer as a signal layer, a power layer or a ground layer. If the parts on the PCB require different power supplies, this type of board&nbsp;typically has more than two layers of power and wiring. The more board&nbsp;layers are used, the higher the cost. Of course, the use of more layers of board is very helpful in providing signal stability.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The professional PCB board production process is quite complicated, taking a 4-layer PCB board as an example. The motherboard&#39;s PCB is mostly 4 layers. When manufacturing, the middle two layers are respectively crushed, cut, etched, oxidized and electroplated. The four layers are the component surface, the power layer, the ground layer and the solder layer. Then put these 4 layers together and crush them into a PCB of a motherboard. Then punch holes and make holes. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">After washing, the outer two layers of the line are printed, copper coated, etched, tested, solder mask, silk screen. Finally, the whole PCB (including many motherboards) is stamped into the PCB of the motherboard, and then vacuum-packed after passing the test. If the copper coating is not well applied during the PCB manufacturing process, the paste may not be firmly adhered, and it is easy to imply a short circuit or a capacitive effect (prone to interference). </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Vias on the PCB must also be noted. If the hole is not in the middle, but is biased to the side, it will produce a non-uniform match, or it will easily come into contact with the middle power layer or the ground layer, resulting in potential short circuit or poor grounding.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><strong><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Copper wiring process</span></strong></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The first step in the production is to create wiring that connects the parts. We use a negative transfer method to present the working film on a metal conductor. The trick is to lay a thin layer of copper on the entire surface and remove the excess. Additional transfer is another way of using less people. This is a way to apply copper wire only where needed, but we won&#39;t talk much about it here. A positive photoresist is made of a sensitizer that dissolves under illumination. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">There are many ways to handle photoresist on copper surfaces, but the most common way is to heat it and roll it on the surface containing the photoresist. It can also be sprayed on the head in a liquid state, but the dry film type provides a higher resolution and can also make a thinner wire. The hood is just a template for the PCB layer in the manufacturing process. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Before the photoresist on the PCB is exposed to UV light, the hood overlying it prevents some areas of the photoresist from being exposed. These places covered by photoresist will become wiring. Other bare copper portions to be etched after development of the photoresist. The etching process can immerse the board in an etching solvent or spray the solvent onto the board. Generally used as an etching solvent, ferric chloride or the like is used. The remaining photoresist is removed after the etching is completed.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><strong><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">1.&nbsp;Wiring width and current</span></strong></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The general width should not be less than 0.2mm (8mil)</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">On high-density, high-precision PCBs, the pitch and line width are typically 0.3mm (12mil).</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">When the thickness of the copper foil is about 50um, the wire width is 1~1.5mm (60mil) = 2A</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The public place is generally 80mil, which is more important for applications with microprocessors.</span></p><p style="line-height: 1.5em;"><strong><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></strong></p><p style="margin-left: 0px; text-indent: 0px; line-height: 1.5em;"><strong><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">2.&nbsp;How high is the high speed board?</span></strong></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">When the rising/falling edge time of the signal is &lt; 3~6 times the signal transmission time, it is considered as a high speed signal.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">For digital circuits, the key is to look at the steepness of the edge of the signal, that is, the rise and fall times of the signal.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">According to the theory of a very classic book &quot;High Speed Digital Design&quot;, the signal rises from 10% to 90% less than 6 times the wire delay, which is a high-speed signal!------ That is, even a square wave of 8KHz The signal, as long as the edge is steep enough, is a high-speed signal, and the transmission line theory is needed for wiring.</span></p><p style="line-height: 1.5em;"><strong><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></strong></p><p style="margin-left: 0px; text-indent: 0px; line-height: 1.5em;"><strong><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">3.&nbsp;Stacking and layering of PCB boards</span></strong></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The four-layer board has the following stacking sequences. The following explains the advantages and disadvantages of various stacks:</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">First case</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">GND</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">S1+POWER</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">S2+POWER</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">GND</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Second case</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">SIG1</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">GND</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">POWER</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">SIG2</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Third case</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">GND</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">S1</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">S2</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">POWER</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Note: S1 signal wiring layer, S2 signal wiring layer 2; GND ground layer POWER power layer</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">In the first case, it should be the best case of a four-layer board. Because the outer layer is the ground layer, it has a shielding effect on EMI, and the power layer is also reliable close to the ground layer, so that the internal resistance of the power source is small, and the best suburban fruit is obtained. However, the first case cannot be used when the density of the board is relatively large. Because of this, the integrity of the first layer cannot be guaranteed, and the second layer signal will become worse. In addition, this structure cannot be used in the case where the power consumption of the whole board is relatively large.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em; text-align: center;"><img src="https://jpfile1.oss-cn-shenzhen.aliyuncs.com/allpcb/web/image/20190730/6370009727868875893056802.png" alt="stacking and layering of pcb boards.png"/></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The second case is one of the most common ways we usually use. From the structure of the board, it is not suitable for high-speed digital circuit design. Because in this configuration, it is difficult to maintain a low power supply impedance. Take a plate of 2 mm as an example: Z0 = 50 ohms is required. The line width is 8 mils. The thickness of the copper foil is 35 цm. Thus the middle of the signal layer is 0.14mm between the ground and the ground. The formation and power layer are 1.58mm. This greatly increases the internal resistance of the power supply. In this structure, since the radiation is spatial, a shield plate is required to reduce EMI.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">In the third case, the signal quality on the S1 layer is the best. S2 is second. It has a shielding effect on EMI. However, the power supply impedance is large. This board can be used when the power consumption of the whole board is large and the board is the source of interference or close to the source of interference.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="margin-left: 0px; text-indent: 0px; line-height: 1.5em;"><strong><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">4.&nbsp;Impedance matching</span></strong></p><p style="line-height: 1.5em;"><strong><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></strong></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The amplitude of the reflected voltage signal is determined by the source reflection coefficient ρs and the load reflection coefficient ρL.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">ρL = (RL - Z0) / (RL + Z0) and ρS = (RS - Z0) / (RS + Z0)</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">In the above formula, if RL = Z0, the load reflection coefficient ρL = 0. If RS = Z0 source reflection coefficient ρS = 0.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Since the ordinary&nbsp;MITL&nbsp;resistance&nbsp;Z0 should normally meet&nbsp;the 50 Ω requirement of about 50 Ω, the load impedance is usually in the range of several thousand ohms to several tens of kilo ohms.&nbsp;Therefore, it is difficult to achieve resistance matching on the load side. However, since the signal source resistance is usually small, it is roughly a dozen ohms. Therefore, it is much easier to achieve resistance mating&nbsp;at the source. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">If the resistor is connected in parallel with the load, the resistor will absorb some of the signal and it will be unfavorable for transmission (I understand). When the TTL/CMOS standard 24mA actuate current is selected, its export&nbsp;resistance&nbsp;is approximately 13Ω. If the MITL&nbsp;resistance Z0 = 50Ω, then a 33Ω source discharge&nbsp;resistor should be added. 13Ω+33Ω=46Ω (approx. 50Ω, weak underdamping contributes to signal setup time)</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">When other transmission standards and drive currents are selected, the matching resistance will vary. In high-speed logic and circuit design, for some key semaphore, such as clocks, control signals, etc., we refer to&nbsp;that you must add source-side matching resistors.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">In this way, the signal is also reflected back from the load end. Because the source impedance matches, the reflected signal will not be reflected back.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="text-align: center;"><img src="https://jpfile1.oss-cn-shenzhen.aliyuncs.com/allpcb/web/image/20190730/6370009784511382914564225.jpg" alt="4 layer board impedance matching.jpg"/></p><p style="text-align: center; line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="margin-left: 0px; text-indent: 0px; line-height: 1.5em;"><strong><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">5.&nbsp;Power cord and ground wire layout precautions</span></strong></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The power cord is as short as possible, straight, and it is best to go tree-shaped, do not take the ring.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Ground loop problem: For digital circuits, the ground loop caused by the ground loop is tens of millivolts, while the TTL anti-interference threshold is 1.2V, and the CMOS circuit can reach 1/2 supply voltage. That is to say, the ground loop circulation will not adversely affect the operation of the circuit. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">On the contrary, if the ground wire is not closed, the problem will be even bigger, because the pulse power supply current generated by the digital circuit will cause the ground potential imbalance at each point. For example, I measured the ground current of the 74LS161 in reverse when the inverter is 1.2A. The 2Gsps oscilloscope measured the ground current pulse width of 7ns). Under the impact of large pulse current, if a distributed ground line (line width 25 mil) is used, the potential difference between the ground lines will reach the level of 100 millivolts. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">After the ground loop is used, the pulse current is spread to various points of the ground line, which greatly reduces the possibility of interference with the circuit. With the closed ground wire, the maximum instantaneous potential difference of the ground of each device is measured to be one-half to one-fifth of the unclosed ground. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Of course, the measured data of boards with different densities and different speeds are very different. I said above, it refers to the level of the Z80 Demo board attached to the Protel 99SE. For the low-frequency analog circuit, I think the power frequency after the ground line is closed. Interference is sensed from space, which is not simulated or calculated anyway. If the ground wire is not closed, there will be no ground eddy current. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">Beckhamtao said, &quot;But the ground-frequency open loop, the power frequency induced voltage will be larger.&quot; The theoretical basis and the two examples, I took over one of the others 7 years ago. The project, precision pressure gauge, uses a 14-bit A/D converter, but the actual measurement has only 11 effective precision. After investigation, there is 15mVp-p power frequency interference on the ground. </span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="text-align: center; line-height: 1.5em;"><img src="https://jpfile1.oss-cn-shenzhen.aliyuncs.com/allpcb/web/image/20190730/6370007696466263654650457.png" alt="the ground of the pcb.png"/><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">&nbsp;</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;"><br/></span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;">The solution is to simulate the ground loop of the PCB. Scratch, the front-end sensor to the A/D ground wire is distributed by the flying line. Later, the mass-produced model PCB is again produced according to the flying line, and there has been no problem so far. The second example, a friend loves a fever, DIY a power amplifier, but the output always has a hum, I suggest it cut the ground loop, the problem is solved. Afterwards, this man looked at dozens of &quot;Hi-Fi machine&quot; PCB diagrams, confirming that no machine used a ground loop in the analog part.</span></p><p style="line-height: 1.5em;"><span style="font-family: Helvetica; color: rgb(68, 68, 68); letter-spacing: 0px; background: rgb(255, 255, 255); font-size: 16px;"><br/></span></p>

97

comment

All comments

Unknown

5595

0

97

Go to Order My Own PCB

Rules about cashback: 1. Valid time: ALLPCB cashback activity will end on April 1st. 2. Capped amount: The capped amount of cashback for each account is $5,000. Each order can get a maximum of $2,000 cashback. That means every author can get $5,000 max. 3. Cashback range: The cashback activity only covers the corresponding PCB order. The order amount for other combined payment products will be invalid. 4. Clicking your own promotional link will be invalid. The same email address, shipping address, contact information, and phone number are all recognized as the same account. 5. ALLPCB has the final interpretation right of the cashback activity.

ALLPCB will donate 2% to the author for this promotion link.

Other Projects

Home / Industrial Automation low Cost with Arduino an ESP01

2460

0

314

Alternate Text josemarjr